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A method of solving stabilization problems by isolating a controlled subsystem of possibly smaller 

dimension [l, 21 is developed further. The stabilizing action is determined by the solution of an optimal 

stabilization problem [3] for a linear controlled subsystem. The control that is found is implemented in the 

form of a feedback loop that uses an estimate [4] of the state vector (or part of it) constructed by measuring 

the perturbations of the positional coordinates. The stability of the unperturbed motion in a complete 

closed system is established by reducing the problem to a special case of the theory of critical cases [5,6] or 

to the problem of stability under constantly acting perturbations [6]. 

IT WAS suggested in [7] that the steady motion of a system with cyclic coordinates could be stabilized 
by applying controlling actions to these coordinates. In Hamiltonian variables sufficient conditions 
have been obtained [7, 81 for the problem of obtaining asymptotic stability with respect to the 
positional coordinates and their momenta to be solvable. A qualitative analysis has been performed 
[9, lo] for the problem of stabilization in Lagrangian coordinates. Sufficient conditions have been 
formulated [ll] for the asymptotic stabilization of steady motions. A range of criteria has been 
obtained [12] for controllability and observability for stabilization problems in Lagrangian variables. 
In the cases investigated [7-121 the controls have been applied over all cyclic coordinates, and 
asymptotic stabilization problems in the first approximation with respect to all phase variables have 
been considered [9-121. 

Stabilization problems are investigated below which contain the weaker requirement of only 
stability of unperturbed motion. The control acts only on some of the cyclic coordinates. 

1. Consider a mechanical system constrained by time-dependent geometrical constraints, and 
whose position is given by generalized coordinates ql, . . . , qn. Here the kinetic energy of the 
system has the form (assuming that T does not depend explicitly on time) 

T= Tz’T1+T,,, T2 = suii(q) 4141 

TI = +(q)ql~, To = To(q), q’ = (41, . . . ,qn) 

The prime denotes transposition; summation is performed over repeated indices; the indices vary 
as follows: 

i,j= l)...) n, p, v = l,..., k, r, s = k+l,...,n 

u, u = k+l,...,k+m, w, E = k+m+l,...,n 

Suppose the system is acted on by potential forces with energy II(q) and non-potential 
generalized forces Qi (4) 4’). We will assume that in some open domain of phase space Uij (4)) dj(q), 
T,(q), the potential energy II(q) and the non-potential generalized forces Qi(q, q’) are analytical 
functions of their variables, and that T2 is a positive-definite function of the velocities. 

tPrik1. Mat. Mekh. Vol. 56, NO. 6, pp. 939-950, 1992. 

843 



844 A. YA. &ZASINSKtl 

We introduce the vectors and matrices 

a’ = (41, ) . 9 ,4k), P’= h+1r...,4n), 4 =&. ” d?j 

et??) = lr~,vG?~ll t &2@4) = II~,,fm = &k?), Q2c.d = fl a, (41 II 

d&q) = ~~~~(~~,..~~~kt~~~~, $m = bfwm. . . 74rWII 

[In actual cases, decomposition of the vector 9 into vectors ty and ,f3 is performed according to the 
various ways the kinetic energy, potential energy and generalized forces Qi(q, 4’) depend on the 
generalized coordinates.] 

We take as variables describing the state of the system the Routhian variables cr, at, fl and 
p=aT/ap’=a,ltu,+a2p’+d~. We introduce the Routhian function and write the equations of 
motion 

where, for any matrix X(g) = ~~,~~j~~)~l, -At&l 
and Xrsi denote “vectors” with matrix components 

~~~~i~/~~~~~ and ~~~~~j/~~*~~, respectively, where vis the number of the component of the “vector“, and 
X&, and (Xi,, )’ are vectors with components jlax,.i/aq,/j and (ll~~=~/~~j}l~‘, respectively. 

2. We will assume that the coordinates p’ = (gk+, , . . . , qfl) are cyclic, i.e. the kinetic energy, 

force function and generalized forces do not depend on them, and there are no generalized forces 
corresponding to the coordinates /3. The system then has cyclic integrals and under given conditions 
can perform steady motions 

4p = qp o = const, pr = 6, = const (2.1) 

We know that motion (2.1) is atways stable with respect to perturbations of the cyctic momenta 
(without the application of supplementary controls). Keeping this property of the naturat proper 
motions of the system in mind, we consider the problem of stabilizing an unstable motion of (2.1) to 
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one that is stable with respect to all phase variables by applying linear controls to some of the cyclic 
coordinates. We shall construct controls of possibly smaller dimension and a structure such that a 
smaller amount of information may be required. We introduce the notation qQ = &J-~-J+, , 

PU=%L+YU> pw=~,+ z, for the perturbations and compose the equations for the perturbed 
motion, separating out the first approximation 

x’ = XI, Ax; +(G++D)x, +(CtP)xtI’,y’ +(H, tB,)y+ 

tr,z’ +(Hz +&)z = N(x,x~,y,Z,U), y’ = 24, 2’ = 0 (2.2) 

A = II b;;,jo II, ~(~,~} = ~(~I-~~)~(~-~~)- T* +n 

hpr 
- r(Pr-41 9 

V II r1 = Ii I ‘Ipuhi, +apw haul0 II, Bl = 

rz = II lQpuh#, +QpdwefO II t p = lI~~),II~ D = II 
Bz = li{~), I/, K” = K(a,p)-G, A, = a*(q)--4 

Qa(a,ai,p) = iQ,lo +fi+W +&y+&z+Qk2 

a4 
-_ + Tpr 

a4V 

IIt?-1 o/I @WY I II aa, o 

aw aw 
r ‘1 = iiQp,b,,+~pwb,,ii-rl, aa! = aa 

i 1 tCx+H,ytH2Z+II’2 
0 

G(x,xl ,y, z, u) = -x; (u;~, T ?~Q;,~)x~ - II’2 - I”lu - K"xl t Qk2 

L= -(G~D)~,-(C+Z’)X-(H,~B,)~-(H~+B~)Z-~~U 

N(x,xl.y,z,u)= @tAA;‘(L +a) 

The notation {. . .},, means that the expression is calculated for the motion (2.1); a superscript 
after the prime gives the order of the subsequent terms in the expansion of the corresponding 
expression. It is obvious that in order for motion (2.1) to exist it is necessary that 

(E) o +{ Qa o]= 0 

be satisfied. 

Remark 2.1. The matrix C+ P of coefficients of the linear positional forces, unlike the cases considered 
previously [ 1,2,11,12], is not in general symmetric. A skew-symmetric component does not only appear in the 
presence of non-potential positional forces in the vector Q, , but can also appear under the action of forces 
containing cyclic velocities. Suppose, for example, that only forces linear with respect to the velocities are 
present 

Separating out the linear terms in the expansion of this vector in the neighbourhood of motion (2.1), we 
obtain 



and we see that the appearance of a skew-symnletric component is even possible from the actton of forces that 

are linear in the cyclic velocities with constant coefficients. it’ the kinetic energy depends on the coordinates. 

Isolating the controlled subsystem 

t’ = Fg+\Jru, E’ = (A$ ,Y’), Jr’ = (0 -r;A-“J,) i:..;, 

Fz= O 
// 

0 

F= -A -“(c+P) -A -“(G +@I j/ 

0 0 

we obtain a criterion for the stabilizability 131 of motion (2.1 ) 

rankY = rank(\kF9., . FZk’m’--ltPj = 2k+m 

which, using the structure of the final row of the coagulated matrix Y, can be written in the form 

rank Y, = rank(\l,Fl \I’i . . F, 2k -+&,) = 2k, 11.43 

9; = (-r;A-‘, [r;A-‘(G+D)‘-H, -B&4-‘) 

We introduce the quality criterion 

f7..ii 

(12, and a22 being positive defnite quadratic forms of their arguments). 

~~eu~e~ 2.1. Condition (2.4) is sufficient for the stabilizability of motion (2.1 f by linear controis 
applied to some of the cyclic coordinates under the action of positional cordinate potential forces 

with energy II(q) and arbitrary non-potential forces Q~X(cu. c~i, 11). The stabilizing action L{‘. .= M< 
can be found by solving the problem of optimizing [in the sense of minimizing integral (2.5)] the 
stabilization problem for the controlled subsystem (2.3) and depends only on variables occurring in 

this subsystem. 

The proof is similar to the proof of the theorem in 121. 
In the full system (2.2) under the action of u” there is a critical case whose reduction in general requires [S. h] 

a non-linear transformation of the variables .Y, ,v. As a result of this the control II* ensures asymptotic stability 
of the positional velocities, and, generally speaking. the stability of the positional coordinates and cvclic 

velocities. 

remark 2.2. If the controf is applied to the whole cyclic coordinate vector, ~onditj~~n (7.4) becomes the 
condition for the asymptotic stabilizability of motion (2.1) under action on positional coordinates and with 
arbitrary non-potential generalized forces as well as potential forces. 

Remark 2.3. From the structure of the coagulated matrix Y, one can see that the controllability depends very 
much on the coefficients of the linear terms in the expansion of the generalized non-potential forces. Here some 
new cases can appear in addition to those considered earlier [ 2, 121. For example, for gyr~~sc~~p~cally decoupled 

syfstems (in the chosen part of the cyclic coordinates whose momentum perturbations occur in the controlled 
subsystem) (F, = 0) the possibility arises of stabilizing the trivial motions (Hr = 0) in these coordinates for 
R, #O. In particular, we have the following corollary. 

Corollary 2.1. If for HI = 0 the rank of matrix B 1 equals the number of positional coordinates, a 

gyroscopically decoupled subsystem (with respect to the controlled cyclic coordinates) is always controiiable 
(see Theorem 2.1 of [12]). 

In motion-stabilization problems for systems with several cyclic coordinates the question arises of reducing 
the dimension of the controlling action. Using the structure of the equations of perturbed motion in 1131, WC’ 

shall estimate the number of controlled cyclic coordinates. 
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Corollary 2.2. The smallest number of controlled cyclic coordinates required to satisfy the sufficiency 
condition (2.4) for the stabilizability of motion (2.1) is equal to the number r of non-trivial polynomials of the 
matrix Fi 

Remark 2.4. The problem being considered is considerably different from that investigated in [14] for the 
smallest dimension of a control vector stabilizing the null solution of the non-linear system (with an isolated 
linear part) 

x = f(x)+Ip(x,u) = Ax+&+... 

up to asymptotic stability and in the first approximation with respect to all variables. In the problem under 
consideration, when there is a change in the control dimension, the dimension of the whole controlled 
subsystem changes, as a result of which there is a change in both matrices F and ? that play the role of matrices 
A and B. (In [14], when the dimension of u changes, only the number of columns in matrix B changes.) 
Furthermore, the matrix F here has at least m zero eigenvalues. 

Thus when solving specific stabilization problems the verification that criterion (2.4) is satisfied should begin 
with m = r. When there are several cyclic momenta, to each selection of controlled momenta there corresponds 
a matrix q,, because its second row contains the matrix HI + B, and, moreover, the matrix Ii will also change. 
If however the total number of cyclic coordinates is less than r, the sufficiency condition (2.4) cannot be 
satisfied. 

3. In many papers on stabilization it is implicitly assumed that at each instant of time all variables 
that are necessary to construct the control are known. However, it is difficult to believe that in the 
majority of practical situations all the required components of the state vector are accessible to 
measurement (either because there is a limited number of measurement devices, or else some of the 
state variables are in principle impossible to measure-for example, y and z in the general case). 
The output from the controlled object usually consists of individual state vector components or 
linear combinations of such components. Hence, in order to make use of the possibilities supplied 
by control with feedback from the state, it is necessary to find an acceptable estimate [4] for the 
whole state vector (or some of it) from the output data. The problem of stabilization to asymptotic 
stability in Lagrangian coordinates of steady motions in all the phase variables of the problem was 
investigated from this point of view in [12]. The controls depended on all phase variables and acted 
on all cyclic coordinates. 

In the stabilization problems considered here, the controls are only applied to some of the cyclic 
coordinates and depend only on the phase variables of the controlled subsystem, which need not 
contain perturbations of many cyclic momenta. It is natural also to expect a reduction in the amount 
of measured information necessary to produce the stabilizing actions in such a method of 
stabilization. Here one should pay attention to the qualitative difference in the meaning of direct 
observability (measurement) of the variables y, z (perturbations of cyclic momenta) from variables 
X, x1, because to obtain the values of just one of the components y, z may require information on all 
the positional coordinates of (Y and all (including cyclic) velocities (Y*, p’. 

Hence we consider therefore the observability problem in system (2.2) without measuring 
perturbations of the cyclic momenta y, z. To be specific we will investigate the problem of the 
possibility of constructing controls when only measurements of information solely on perturbations 
of positional coordinates are available. 

Assertion 3.1. If the condition 

rank(Hr +B1,Hz +&) = n-k (3.1) 

is satisfied, system (2.2) is completely observable in a neighbourhood of motion (2.1) in terms of 
measurements of perturbations of positional coordinates. 

Assertion 3.2. If in the equations of perturbed motion (2.2) there are no terms linear in 
uncontrolled momentum perturbations (i.e. HZ + B2 = 0), then with the condition 

rank(H, t B,) = m (3.2) 
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the variables X, xl. y in system (2.2) are observable in a neighbourhood of the unperturbed motion 
(2.1) through measurements of positional coordinate perturbations. 

The validity of the assertion follows from the structure of system (2.2) and [ 151. 

Remark 3.1. Condition (3.1) for the complete observability of the system cannot be satisfied if the number 01 
positional coordinates is less than the number of cyclic coordinates: the rank of a matrix cannot be greater than 

the number of its rows. For Q,, = D,cv, , 7‘= T:, ;I similar result in Lagrangian coordinates was obtained in 
[12]. 

Remark 3.2. If system (2.2) contains no terms linear in z, then, like the preceding, to satisfy condition (3.2) II 

is necessary that the number of positional coordinates is not less than the number of controlled cyclic momenta. 
i.e. kam. 

Remark 3.3. According to conditions (3.1) and (3.2) the non-potential generalized forces also influence the 
observability. In particular. unlike in [ 121, complete observability of system (2.2) in terms of measurements ot 
positional coordinate perturbations is possible in a neighbourhood of the trivial (H, = 0. H3 = 0) motion. For 

this it is sufficient that rank (B, , B,) = n-k. 
Under condition (3.1) for the system 

q’ = F,rl+*,u, a = $77, *; = (\k’, O), s = (Ek,O,O) 

77 ’ = (E’> z’), S1 = (S,O), Fz = II F Hz tBz 
o o 

/I 

there exists an asymptotic identifier (a system of asymptotic estimates) [14] 
‘0 

71 = F~q”+L(a-Ss1no)t~2u 

of the state vector rl in terms of the measurement u. 
For Hz + B2 = 0 and condition (3.2), there exists for the controlled subsystem (2.3) an asymptotic 

identifier 

E*” = F~‘tL,(a, -St”)+*u ilS.-if 

of the state vector of this subsystem in terms of the measurement CJ~ = SC. 

Here the constant matrices L and LI of appropriate dimensions, determining the form of the 
approach of the estimation errors to zero, can be found by solving the optimal stabilization problem 

for the systems 

{’ = F;{tS;w (3.5, 

p’ = F’p tS’u ( 3 .6 ) 

respectively, for specified quadratic quality criteria, which follows from the duality of the control 

and observation problems [4] for systems (3.3) and (3.5) ( corresponding to (2.3) and (3.6) in [?I). 

Remark 3.4. This paper uses. for simplicity. just one sufficiently rich set of external informatron: 

measurements of perturbations of all positional coordinates, which is, of course, not necessary in general. In 

particular, one can measure perturbations of only some of the positional coordinates. Then one should take :IS 

the matrix S in systems (3.3) and (3.4) the matrix 

and instead of conditions (3.1) and (3.2) one should, respectively, require that the following conditions should 

be satisfied 
rank(S;.FaSi.. , F, ‘n+k-‘S;I) = n+k. Sir = (S,,O) 

rank@: F’S;. . . F’ 2k+ m _ ‘Sk) = 2k + m 

Using specific properties of system (2.2) of the equations of perturbed motion. one can reduce the 
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dimension of the estimation system, taking (3.4) to be the identifier of the system irrespective of the 
presence of terms linear in z in Eqs (2.2). 

Theorem 3.1. Suppose that for a mechanical system described by Eqs (2.2), conditions (2.4) and 
(3.2) are satisfied in a neighbourhood of the unperturbed motion (2.1). Then motion (2.1) can be 
stabilized with respect to all variables by the application of the linear control u = Mt” to some of the 
cyclic variables, where the matrix M is given by the solution of the optimal stabilization problem for 
the controlled subsystem (2.3) and 5” is the estimate of the vector 5 obtained by the estimation 
system (3.4) from the measurement ml. The matrix L1 is found by solving the optimal stabilization 
problem for system (3.6). 

Proof Under condition (2.4) for the system 

t’= FEt*u+N,, Nz = Nr Iz=a, N; = (OJW’,O) (3.7) 

the control u* = Mf, given by the solution of the optimal stabilization problem for subsystem (2.3) 
according to the criterion (2.5), supplies asymptotic stability for the solution 5 = 0 in the first 
approximation. From (15) and the structure of the system, condition (3.2) is a sufficient condition 
for the observability of system (3.7) in a neighbourhood of the motion 5 = 0 from the measurement 
ul. The identifier (3.4) then exists [4], where the matrix L1 can be determined [3] from the solution 
of the optimal stabilization problem for the solution p = 0 of system (3.6) with the criterion 

11 = j%&) + %Wl a 

where flR3 and a4 are positive definite quadratic forms. Hence, in the closed system 

5“ = F[+\kutNz, u1 = St 

5 ” = FE0 tLl(ol -S[')t\ku, u = ME” (3.8) 

the real parts of all roots of the characteristic equation are negative [4, Theorem 7.71. Consequently, 
the solution 5 = 0, [” = 0 of system (3.8) is asymptotically stable. The closed system 

[’ = F.$tJlu+HztN1, z’ = 0, u1 = St, u =M[’ 

t 
*0 

= FC;“+Lr(o,-St”) +a, H’ = (O.-(H, +&)‘A-‘,O) (3.9) 

of the complete problem is obtained from system (3.8) by the action of constant perturbations 
occurring at z(t) = z. = const #O. According to the theorem on stability under constantly acting 
perturbations [6, Sec. 701 the point 5 = 0, 5“ = 0 for system (3.9) is stable. 

Remark 3.5. We note the connection between the result obtained and Routh’s theorem [16] on the 
conditional stability of steady motions and Lyapunov’s [17] supplement to this theorem. Equation (3.7) 
describes the (controlled) perturbed motion of systems in a neighbourhood of motion (2.1) with unperturbabil- 
ity of uncontrolled cyclic momenta. Hence the closed system (3.8) provides asymptotic stability for motion 
(2.1) to first order of approximation under the condition .za = 0 on the initial perturbations. When this 
condition is removed the motion becomes (unconditionally) non-asymptotically stable. 

Remark 3.6. According to the theorem that has been proved, conditions (2.4) and (3.2) are sufficient 
conditions for the problem of controlled stability with feedback from estimates of the state vector to be solvable 
irrespective of whether system (2.2) contains terms linear in the perturbations of the uncontrolled momenta (cf. 
with Assertions 3.1 and 3.2). When these conditions are satisfied not only is the dimension of the control 
problem reduced compared with [7-121, but the dimension of the identifier is reduced compared with [ 121. The 
total dimension of the linear closed system for which the matrices M and Lr are determined, is equal to 
2(2k+ m) as opposed to 2(n t k) in [12], i.e. a reduction of twice the number of uncontrolled cyclic momenta. 
But in the problem under consideration, unlike the one studied in [12], there will only be non-asymptotic 
stability in the closed system. 
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Remark 3.7. For the unique determination of the matrices 1, and L, from the solution ot the dual 

stabilization problem the methods of synthesizing stabilization laws considered in (181 mav turn out to hi 

efficient (see Example 5.1 below). 

4. We will investigate the possibility of stabilizing motion (2.1) by using linear controls that arc 

independent of cyclic momentum perturbations to some of the cyclic variables 

111 = M,x+M,x, (4.i ,! 

where the matrices M, and M2 are to be determined. in the controlled subsystem 

x=x,, x;= A-‘cc+-P)x A_l(G -tD)x, /PI-,Ul -A”(H, +Iq, (4.2, 

two fundamentally different situations are possible. I’he first of these is characterized hy the tacl 

that an action (4.1) exists asymptotically stabilizing the point 

x = 0, x1 = 0. J’ = 0 !-$.>l 

by virtue of Eqs (4.2) for all the variables of this system. One can clarify whether such a possibility 

exists using the Routh-Hurwitz criterion for the equation 

Ek h --EJ( 0 

CtPtI’,M, AhtDtG+r,M, HI t B1 = 0 (4.4) 

-M, --M2 E’, x 

Obviously, for this to be true when det( c’+ P) # 0 it is necessary that 

det(CtP)det(M1(CtP)-‘(H, +B,)) > 0 (4.3) 

because this determinant is equal to the free term in Eq. (4.4) 

Remark 4.1. For m> k the determinant (4.5) vanishes [ 191. Hence a control of the form (4.1) cannot ensure 
asymptotic stabilizability if the number of cyclic coordinates is greater than the number of positional 
coordinates. 

Remark 4.2. By virtue of (4.2) there are in general no efficient algorithms for constructing controls of the 
form (4.1) that ensure asymptotic stabilizability of the point (4.3). The coefficients of controlled phase \:ariables 
can be made to vanish by choosing the coefficients in the quality criterion [20]. To determine the matrices M, 

and M2 uniquely one can use the suboptimal control construction method [21]. But it is impossible to guarantee 
that such a control can be found in the general case, because the satisfaction of the Routh-Hurwitz criterion for 
Eq. (4.4) is only a necessary condition for the existence of suboptimal control. 

We will now analyse the second situation possible in system (4.2) under the action of control 
(4.1), which is characterized by the fact that such controls cannot, in principle, ensure asymptotic 
stability of the point (4.3) because of system (4.2). One of the simplest cases of this kind appears 

when II1 + B1 = 0. For systems that are gyroscopically coupled with respect to the controlled 
momenta (i.e. lYl #O), under special conditions it is still possible to stabilize motion (2.1) by control 

(4.1) if we take the following as the controlled subsystem 

(; = F,$tQ,u,, {; = (x’,x;). Q; = CO,-r;A-‘) (4.6) 

Theorem 4.1. If, for a mechanical system that is gyroscopically coupled in some of its cyclic 

momenta, with the condition 

rank(QIFIQI.. . F~k-‘QI) = 2k (4.7) 

the equation of perturbed motion (2.2) does not contain freely-entering perturbations of the cyclic 
momenta, then the unperturbed motion (2.1) is asymptotically stabilized in perturbations of the 
positional coordinates and their velocities and stabilized in the cyclic velocities under the application 
to some of the cyclic coordinates of the linear control ~12 = Mi[y. The control is formed through 
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feedback via the estimate 6: obtained for the vector & from the measurement a2 = S2&, 
S2 = (& , 0) from the system 

,$” = FI t1” +Lz(ez - S2 c;;) + Ql u 

where the matrix L2 is determined by the solution of the stabilization problem for the system 

v = F;v+S;wl (4.8) 

Proof. The asymptotic stability of the closed system 

[; = Fr[i +&Us +N4, (72 = SZtl, N4 = N3 Iz,y=(), iv; = (0 NY) 

&” = Fl t; +L2(02 -.~,F;)+Q,~,, ~2 = J%%’ 

is proved as in Theorem 3.1, because with condition (4.6) the problem of the optimal stabilization of 
the point & = 0 is solvable [3] for the given criterion 

OD 
I [a5&) +~6(ul)ld~ 
0 

[fb @I> and fi6(h ) are P t osi ive definite quadratic forms.] Observability from the measurement a2, 
as can easily be verified, occurs for arbitrary matrices in the second row of the coagulated matrix Fl . 
Consequently, one can determine [3, 181 the matrix L2 by solving the problem of stabilizing system 
(4.8). The stability specified in the statement of the theorem in the closed system 

h = Fltl +Qluz +N3, =2 5 s2,$, y1 = 112, 2 = 0 

G” = F,5;+&(02 - S2 &‘)+Ql~2, 
(4.9) 

~2 = M& 

follows from the Lyapunov-Malkin theorem [5,6] on stability in the special case of it - k zero roots. 

Remark 4.3. If y and z occur in Eqs (2.2) free from x and x1 only in the non-linear terms, then linear control 
of u2 cannot ensure stabilization of motion (2.1) when m = 1. Under the action of u2 and the presence of terms 
non-linear in y and z the problem of the stability of the null solution of system (4.9) reduces to the problem of 
the stability of the null solution of the system 

E; = fi,E, +&u,, Y’ = uz (4.10) 

for constantly acting perturbations of z = z. = const. 
For stability in system (4.9) one must have [6] asymptotic stability of the null solution of system (4.10) at 

z. = 0. Such stability is possible for m = 1 when [5,6] y occurs in the non-linear terms free from x and x1 to odd 
degree. Here however this degree is only equal to two. 

5. Example 5.1. As an application of the stabilization method presented in Theorem 4.1, we will solve in 
general form the problem of stabilizing steady motions with one positional and several cyclic coordinates in a 
situation included in this theorem. Thus, we have the equations of perturbed motion 

X”XI, x, ’ = ax+bx, +gu+N,(x,x,,y,z,u), y’ = u, z’ = 0 (5.1) 

where a, b and g are constants, Ns, x, x1 and y are scalars, z is a vector, with gf0, and Ns(O,O, y, z, 0) ~0. 
Introducing the simplest quality criterion 

I = J (x’ +x; +u’)dr (5.2) 
0 

we find (see Eqs (111.13) of [3]) the coefficients of the Lyapunov functional that are optimal in the sense of 
minimizing (5.2), from which we obtain 

UZ =g-‘[rix”+(b+(b’+g”+2d)‘x;], d = u + (a’ +ga)M 

Here the vector (x”, xi) is an estimate for the vector (x, xl) obtained from the system 

(5.3) 

X 
‘0 

= I,(zd-x”)+x;, I, = cu+b 
.O 

x1 = ax”+bx~+12(x-x’)+gu, I, = %(01+ b) (a + 2 b) (5.4) 
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(where a is a sufficiently large positive number) for measuring X. The matrix L\ = (l, , I: ) is found by solving 
the dual stabilization problem by the method proposed by Krasovskii (see [ 18, p. 971). 

~xu~ple 5.2. Consider an asymmetric gyroscope. The Routhian function has the form j?] 

R = R, +R, tR, = %(a- A-‘(b,,cf - 2b,,c,c, +b,,c,Z)j e”+A-‘[b,,c, -~ h,,c,)p, + 

+Cb,,c, - b,,c,)p,l e +tm, +m,)gy,sinEcose.-1/2A-1[bZZP: --2~,p,b,, +b,,p:l, 

a=b b II *z -b2 12 

for gyroscope parameters in the notation used rn [IO]. The equations of the manifold of steady motions 
dR,,/M = 0 have solutions other than the motion 

8, = 0, pz = 6, = const, pt = 6, = conft (5.5) 

In particular, with the additional condition A = 0 (the axis of the flywheel parallel to the ~2 axis, it being 
previously [lo] assumed that v = 0), for sufficiently large Sz a real solution 

00 = %n, p2 = 6,. PI = Ml.r;‘(ltv’l --4p,(m, +n~,)gy,6;‘)b;,6~ 

b:, = J~A,co~~~+B~+C~sin~~+m,(x~sin*f+y~ +Z:COS~E) 

93 = (G, +m,x,y,)cose 

exists, For (G2+~M3~,yI)yzcos~>0 one can obtain from (5.6) the solution 

(5 crj 

00 = %n, f/2&* = 2 2 JP, Cm, + m,) gy;, 6; = ‘/zj.$-ibf 6*l II 2 (5.7) 

The possibility of stabilizing motion (5.5) by applying controls to both cyclic coordinates was analysed in 1 ICI/. 
In 1121 the measurements supplying information necessary for formulating controls stabilizing (5.5) were 
determined by the same method. For the system being considered, in Eqs (2.2) we have 

H, + B, = 
ab,, 
----,A ’ 

8b, ; 
-~ ---62 if’ 1 i 

ae a0 

In a neighbourhood of motion (5.5) l-1 50, l‘xf 0. HI + B, = 0, H2 + Bz = 0, and the equations of perturbed 
motion do not contain freely occurring y and z. According to Theorem 4.1 the problem of stabilizing motion 
(5.5) is solved by applying the control given by (5.3) to one of the cyclic coordinates, where the vector (x”, xy) is 
obtained from system (5.4). We remark that for stabihzing the motion (5.5) with the help of the control 
constructed in 121, although the number of positional coordinates is equal to the number of cyclic coordinates 
occurring in the controlled subsystem, unlike the case in [2], condition (3.2) is not satisfied. Hence when 
stabilizing motion (5.5) by the control of [2], it is necessary, as in 1121, to measure the perturbations of the cyclic 
velocities. In view of the non-satisfaction of condition (4.5) because H, + B, = 0 and H2 t 13, = 0, it is 
impossible to reduce the volume of information by excluding perturbations of the controlled momentum from 
the control. 

In a neighbourhood of motion (5.7) 

rz = 0, r, = A,,IA, +B, + m,(y: + z:)] COSE # 0, 4 +4 = [Cm, +m3)x>‘1: 
Lz 

~~‘1 sine 

in which y and z occur freely. When the controllability condition 

u,& - bg,h, -hi f 0, K = 1,2, gK = -A-‘rf(, h, = -A-‘(H,+B,) 

A =n-[b,,c,ace,)-2b,,(O,)c,(e,)--b,,(e~)c,l/A(e,), a, = -A‘“t32&ia@‘\,, 

is satisfied, the problem is sotvable by using a linear moment along one of the cyclic coordinates. Stabilizati~)n 
by a control acting about the axis of the outer ring of the suspension requires measurement of the cyclic velocity 
perturbation because observability condition (3.2) is not satisfied. If however motion (5.7) is stabilized by a 
moment applied to the axis of proper rotation, the conditions of Theorem 3.1 are satisfied; to formulate the 
control it is sufficient just to measure x from which an identifier of the form (3.4) can be constructed. 
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In a neighbourhood of motion (5.6) 

rl + 0, r2 = 0, HI +B, = -(b:,)-‘sines, J1-4qu,(m2+m,)gY, f 0 

H, + B, = 6, sinE(1 * Jl - 4s;‘(m, + mr) u, gy;) # 0 

The condition of complete observability (3.1) is not satisfied by virtue of Remark 3.1. Nevertheless, using 
Theorem 3.1 and satisfying (3.2), we can construct a closed system of the form (3.9) when measuring only X. In 
the problem of stabilizing motion (5.6) one can also construct a control of the form (4.1). Equation (4.4), 
stabilized by applying a moment about the proper axis of rotation, acquires the form 

Ah3 +dhz+h(m,H3 +C)+m,Hs = 0, C = ~a2R~/a8~~~, Ha = H,+B, 

and from the Routh-~u~itz criterion we have 

m,h; +C > 0, m, > (AH,)-’ d(m,h; + C) 

We note that unlike the preceding cases of stabilization, when the problem could be solved when there is no 
dissipation, i.e. when d = 0, in the last case dissipation with respect to the positional velocity is necessary. 

The author thanks V. V. Rumyantsev for his interest and for helpful discussions, and also the 
referee for useful remarks. 
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